PROGRAMME DE COLLES DE CHIMIE PC*1

SEMAINE N°3: 6 AU 12 OCTOBRE

Formules de Lewis de la semaine : $HClO_4$, N_2O , H_2SO_3 , COS, N_3^- , HSO_3^- , CN^- , HS^- , SO_3^{2-} , $Cr_2O_7^{2-}$, ICl_2^- , NO^+ , H_2CO_3 , C_2H_2 , Cl_3^- , HCO_3^- , FNO, SCN^-

COURS

CHAPITRE 4 : APPLICATION DU DEUXIÈME PRINCIPE À LA THERMODYNAMIQUE CHIMIOUE

- I. Deuxième principe de la thermodynamique (rappels)
 - I.1 Énoncé du deuxième principe Entropie S
 - I.2 Interprétation de l'entropie selon Boltzmann
 - I.3 Variation d'entropie pour un échauffement isobare
 - I.4 Identités thermodynamiques
- II. Enthalpie libre G
 - II.1 Définition de G
 - II.2 Identité thermodynamique pour G
 - → la relation de Gibbs-Helmholtz est hors-programme
- III. Potentiel chimique
 - III.1 Définition
 - III.2 Relation d'Euler
 - III.3 Variation du potentiel chimique avec T et P
 - III.4 Expression du potentiel chimique pour le corps pur
 - III.5 Expression du potentiel chimique
 - \rightarrow la notion de coefficient d'activité est hors programme ; seuls le cas des mélanges idéaux est à connaître
- IV. Applications du potentiel chimique
 - IV.1 Changement de phase du corps pur
 - IV.2 Osmose

CHAPITRE 5 : GRANDEURS DE RÉACTION

- I. Définition
 - I.1 Grandeur de réaction
 - I.2 Grandeur standard de réaction
 - I.3 Relations entre grandeurs de réaction et grandeurs standard de réaction
 - I.3.1 Enthalpie de réaction
 - I.3.2 Entropie et enthalpie libre de réaction
- II. Enthalpie standard de réaction (rappels)
 - II.1 Calcul
 - II.2 Interprétation physique de la valeur de $\Delta_r H^{\circ}$
- III. Entropie standard de réaction
 - III.1 Entropies molaires standard
 - III.1.1 Troisième principe de la thermodynamique (rappels)
 - III.1.2 Interprétation physique des entropies molaires standard

- III.2 Entropie standard de réaction
- III.3 Influence de la température sur $\Delta_r S^{\circ}$
- IV. Enthalpie libre standard de réaction
 - IV.1 Relations entre $\Delta_r G^{\circ}$, $\Delta_r H^{\circ}$ et $\Delta_r S^{\circ}$
 - IV.2 Expression de $\Delta_r G^{\circ}(T)$ dans l'approximation d'Ellingham
 - IV.3 Autres modes de calcul de $\Delta_r G^{\circ}(T)$
 - IV.3.1 Calcul de $\Delta_r G^{\circ}(298 \text{ K})$
 - IV.3.2 Calcul de $\Delta_r G^{\circ}(T)$
- V. Grandeurs standard de changement d'état

CHAPITRE 6 : ÉVOLUTION ET ÉQUILIBRE CHIMIQUE

- I. Critère général d'évolution et d'équilibre
 - I.1 Réécriture de la troisième identité thermodynamique
 - I.2 Condition d'évolution et d'équilibre
- II. ΔrG, constante d'équilibre et quotient de réaction
 - II.1 Constante d'équilibre K° et quotient de réaction Q
 - II.2 Expression de l'enthalpie libre de réaction $\Delta_r G$ en fonction de K° et Q
 - II.3 Nouvelle formulation du critère d'évolution et d'équilibre
- III. Équilibre chimique
 - III.1. Loi d'action de masse (LAM) ou relation de Guldberg et Waage
 - III.1.1 Démonstration
 - III.1.2 Expression d'une LAM dans différents cas
 - III.1.3 Sens physique de la valeur de K°
 - III.1.4 Détermination de l'état final du système
 - III.2. Influence de la température sur K° Relation de van't Hoff
 - → seule démonstration exigible : dans le cadre de l'approximation d'Ellingham
 - III.3. Application : différentes méthodes de calcul de K°
- IV. Courbe $G(\xi)$ pour une réaction à T et P constantes
 - IV.1 Tracé de la fonction $G(\xi)$
 - IV.2 Calcul de ΔG , ΔH et ΔS
 - IV.3 Forces motrices d'une réaction chimique à T et P fixées

TRAVAUX PRATIQUES

Conductimétrie

Spectrophotométrie UV-visible

EXERCICES

Thermodynamique: chapitres 1 à 6 (pour le chapitre 6, on ne s'intéressera pas aux réactions hétérogènes ni aux réactions couplées)

Chimie des solutions PCSI (acides-bases, précipitation, diagrammes E-pH)

Rémi Le Roux